On “Missing Heritability” in GWAS

Fan Li

BIOSTAT 790

February 18, 2016
Overview

- Heritability analysis
- The problem of “missing heritability” in GWAS
- Two hypotheses
- Evidences to support hypotheses
- Summary
Broad-sense heritability

- Trait of interest is measured on a quantitative scale
 - Height, weight, blood pressure etc.
- Assess the proportion of total phenotypic variation attributable to the genetic component (nature vs nurture)
 - Trait - Y; genetic part - G and non-genetic part - ϵ
 - $Y = G + \epsilon$
 - $\text{Var}(Y) = \text{Var}(G) + \text{Var}(\epsilon) + 2 \text{Cov}(G, \epsilon)$
 - assumed to be 0
- Broad-sense heritability $h^2 = \frac{\text{Var}(G)}{\text{Var}(Y)}$
Narrow-sense heritability

- More interested in multiple genes acting jointly
- \(X_m \) - count of disease alleles at the \(m \)th locus \(\in \{0, 1, 2\} \)

\[
Y = \mu + \sum_m \begin{cases}
 a_m X_m + d_m 1(X_m = 1) & \text{additive} \\
 & \text{codominance}
\end{cases} + \epsilon
\]

- Codominance component - departure from additive mode of inheritance
- \(\text{Var}(G) = V_A + V_D \), partition into additive and dominance genetic variance (Falconer and Mackay, 1996)
- Narrow-sense heritability \(h^2 = V_A / \text{Var}(Y) \)
It can be shown that V_A is a function of the average effect of parents’ genes on the offspring’s phenotype (i.e., breeding values/additive genetic effects).

An advantage of using narrow-sense heritability - can be directly estimated from the phenotypic data on relatives (w/out genotype data).

Given parent-child trio data, (Y_O, Y_F, Y_M)
- Linear model $Y_O = \alpha + \beta \left(\frac{Y_F + Y_M}{2} \right) + \epsilon$
- Can show

$$
\beta = \frac{\text{Cov}(Y_O, Y_P)}{\text{Var}(Y_P)} = \frac{V_A}{\text{Var}(Y)}
$$
Narrow-sense heritability - Cont’d

(a) heritability = 0.1

(b) heritability = 0.9

Mid–parental values

Offspring values

Mid–parental values

Offspring values
The (narrow-sense) heritability of height is about 80% (Fisher, 1918; Visscher et al., 2008)

Recent GWASs detected 50 variants that are significantly associated with height in the population, but only account for about 5~10% phenotypic variation (Gudbjartsson et al., 2008; Weeden et al., 2008; Lango Allen et al. 2010)

Where is the “missing heritability” - missing V_A?
- Limitation of GWAS?
- Refinement of statistical methodology?
Hypotheses I

- SNPs used in GWAS explain some or all of V_A, but most of their individual effects are small (below the stringent genome-wide threshold) and hence not reported
 - Testing association of individual SNP with trait - limit to those with strong associations with trait
 - V_A relies on correctly estimating the individual SNP effects (the classic linear regression framework)

\Rightarrow Refinement of statistical model (pooling effects of all SNPs?)
The actual causal variants are not in complete linkage disequilibrium (LD) with the genotyped SNPs.

- LD: a population concept referring to the associations between alleles at different loci.

- Causal variant \rightarrow Trait \leftarrow marker SNP

\Rightarrow provide evidence for the hypothesis (alternative ways of exploiting GWAS data)
Suppose for now we can genotype m causal variants

- y_j - trait for individual j, g_j - total genetic effect, ϵ_j - normal residual variance

The model

$$y_j = \mu + \sum_{i=1}^{m} z_{ij} u_i + \epsilon_j$$

- z_{ij} - normalized allele count
 $$\in \{(x_{ij} - 2f_i)/\sqrt{f_i(1-f_i)}; x_{ij} = 0, 1, 2\}$$
- u_i - scaled additive genetic effect, assumed random
 $$\sim N(0, \sigma_u^2)$$
- $g_j \sim N(0, \sigma_g^2 = m\sigma_u^2)$ since $\text{Var}(g_j) = \sum_{i=1}^{m} \text{Var}(z_{ij})\text{Var}(u_i)$
In matrix notation, $\mathbf{y} = \mu \mathbf{1} + \mathbf{Zu} + \mathbf{\epsilon}$

$\text{Var}(\mathbf{y}) = (\mathbf{ZZ'}/m) \sigma_g^2 + \mathbf{I} \sigma_\epsilon^2$,

where \mathbf{G} is named the genetic relationship (correlation) matrix.

⇒ the model is parameterized by the narrow-sense heritability

$$h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_\epsilon^2}$$

With known \mathbf{G}, we can use REML to estimate variance components.
Obtain \(\mathbf{G} \)

- The number and positions of causal variants are unknown
- Obtain the \(\mathbf{G} \) matrix from the genome-wide sample of SNPs \(\mathbf{A} \) instead by \(\mathbf{A} = \mathbf{W} \mathbf{W}' / N \)
 - \(N \) - # of SNPs; \(w_{ij} = (x_{ij} - 2p_i) / \sqrt{2p_i(1 - p_i)} \); \(p_i \) - allele frequency
- Accounting for sampling error associated with each SNP, improve \(\mathbf{A} \) by

\[
A_{jk} = \begin{cases}
\frac{1}{N} \sum_i \frac{(x_{ij} - 2p_i)(x_{ik} - 2p_i)}{2p_i(1- p_i)}, & j \neq k, \\
1 + \frac{1}{N} \sum_i \frac{x_{ij}^2 - (1+2p_i)x_{ij} + 2p_i^2}{2p_i(1- p_i)}, & j = k
\end{cases}
\]

- Note: (i) \(p_i \) is estimated from the current population (base/reference population); (ii) \(A_{jj} \) is modified to minimize the sampling variation
Example with human height

Selected 3925 unrelated (3248 adults, 677 16-year-olds) individuals from a number of GWASs

- Leaving out close relatives: avoid the possibility that the resemblance between them could be due to shared environment

They were measured for height and genotyped for 300K to 600K SNPs

\[\hat{h}^2 = 0.45 \text{ (s.e. } = 0.08) \]

- substantially more than the published \(\approx 10\% \) results
- not focusing on individual SNPs, but on the total variation explained by SNPs (\(\sigma^2_g \))
- conclude that difference is due to many SNPs with small effects (not individually significant in GWAS) – addresses \(H_1 \)
Correcting for incomplete LD

- 45% is still less than the known 80% results, where is the remaining heritability?

- H_2 – the ability of SNPs to explain phenotypic variation caused by causal variants depends on the LD between all causal variants and all the SNPs
 - cannot measure LD directly
 - can estimate LD between SNPs
 - lack of LD \Rightarrow larger difference between G_{jk} and A_{jk}

- If the causal variants have similar characteristics to the SNPs in terms of allele frequency spectra and LD

- Can mimic LD between causal variants and SNPs using LD between the genotyped SNPs – correcting for incomplete LD and possibly address H_2
 - use this as an empirical guide to calibrate A (get closer to G)
Calibrating \(A \)

Steps

1. Randomly sample \(2N \) SNPs from all SNPs across the genome and randomly split them into two groups (\(N \) each);
2. Calculate \(A_{jk} \) from group 1;
3. Calculate \(G_{jk} \) using SNPs with MAF \(\leq \theta \) in group 2 \(\Rightarrow \) mimicking the relationship between (proxy) causal variants
4. Regress \(G_{jk} \) on \(A_{jk} \) for \(j \leq k \) (use \(G_{jk} - 1 \) and \(A_{jk} - 1 \) when \(j = k \)), and obtain the slope \(\beta \);
5. Repeat with different values of \(N \)

\(\Rightarrow \) essentially investigating how difference between \(G_{jk} \) and \(A_{jk} \) varies with different choices of \(\theta \) and \(N \)
Randomly sampled five sets of SNPs (from 50K to 250K) in the adult data set and ten sets of SNPs (from 50K to 500K) in the adolescent data set; split each set into two groups

Let θ range from 0.1 to 0.5

Found the following relationship

$$\beta = 1 - \frac{(c + 1/N)}{\text{Var}(A_{jk})}$$

c depends on θ:

- cause loci have the same spectrum of allele frequency as the genotyped SNPs ($\theta = 0.5$) $\Rightarrow c = 0$;
- cause polymorphisms tend to have lower MAF (e.g., $\theta = 0.1$) $\Rightarrow c = 6.2 \times 10^{-6}$
Prediction error of genetic relationship

On “Missing Heritability” in GWAS
A closer look at $\beta = 1 - (c + 1/N)/\text{Var}(A_{jk})$

- A_{jk} tends to overestimate G_{jk}
 - if $\theta = 0.5$, $c = 0$, with N approaching infinity, $\beta = 1$
 - causal variants may have smaller MAF, and $c > 0$

Calibrate A_{jk} with

$$A^*_{jk} = \begin{cases}
\beta A_{jk}, & j \neq k \\
1 + \beta (A_{jk} - 1), & j = k
\end{cases}$$

- $\hat{h}^2 = 0.54$ (s.e. = 0.1) if $c = 0$ and $\hat{h}^2 = 0.84$ (s.e. = 0.16) if $c = 6.2 \times 10^{-6}$

- $\theta = 0.1$ is a scenario consistent with the causal variants, on average, being at lower frequency than the SNPs on commercial arrays

- do not prove the causal variants have MAF ≤ 0.1, but could explain the missing heritability if this is the case
Additional results

- After calibration, the narrow-sense heritability estimates do not depend on the number of SNPs used
 - but standard error will be larger with fewer SNPs

- Used simulation studies to validate the method of estimating heritability using genome-wide SNPs
Simulate a trait based on genotype data of 3925 individuals with around 300K SNPs

(i) randomly sample m causal variants; (ii) randomly sample m causal variants with MAF ≤ 0.1

Model:

$$y_j = \mu + \sum_{i=1}^{m} z_{ij} u_i + \epsilon_j$$

- causal effect $u_i \sim N(0, 1)$
- generate residual $\epsilon_j \sim N(0, \text{var}(g)(1/h^2 - 1))$
- set $m = 2000, 3000$ and $h^2 = 0.5, 0.8$

run for 30 replicates
Simulation results

<table>
<thead>
<tr>
<th>MAF ≤ 0.5<sup>e</sup></th>
<th>No. causal variants</th>
<th>h^2<sup>a</sup></th>
<th>Est. h^2 (s.e.m.)<sup>b</sup></th>
<th>Est. h^2 (s.e.m.)<sup>c</sup></th>
<th>Est. h^2 (s.e.m.)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>0.8</td>
<td>0.817 (0.014)</td>
<td>0.678 (0.014)</td>
<td>0.812 (0.014)</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>0.5</td>
<td>0.513 (0.015)</td>
<td>0.428 (0.015)</td>
<td>0.512 (0.015)</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>0.8</td>
<td>0.831 (0.015)</td>
<td>0.693 (0.016)</td>
<td>0.831 (0.016)</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>0.5</td>
<td>0.510 (0.016)</td>
<td>0.424 (0.017)</td>
<td>0.507 (0.017)</td>
<td></td>
</tr>
<tr>
<td>MAF ≤ 0.1</td>
<td>2,000</td>
<td>0.8</td>
<td>0.591 (0.015)</td>
<td>0.433 (0.014)</td>
<td>0.804 (0.026)</td>
</tr>
<tr>
<td>2,000</td>
<td>0.5</td>
<td>0.367 (0.016)</td>
<td>0.271 (0.016)</td>
<td>0.504 (0.030)</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>0.8</td>
<td>0.620 (0.016)</td>
<td>0.462 (0.016)</td>
<td>0.856 (0.029)</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>0.5</td>
<td>0.384 (0.020)</td>
<td>0.287 (0.019)</td>
<td>0.533 (0.036)</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Statistical approaches to address the two proposed hypotheses to explain “missing heritability” in GWAS
 - Refinement of statistical model
 - a model fitting random effects of individuals and using all SNPs to estimate relationship between individuals
 - contrast to standard GWAS models which select SNPs based upon test statistics for association between height and SNPs
 - correcting for imperfect LD
 - essentially adjusting for $A \Leftrightarrow$ calibrating the prediction for random effects
 - the interplay between prediction of random effects and the estimation of variance components due to these latent random effects