Analysis and sample size calculation with clustering effects in individually randomized trials.

Xingyan “David” Wang
Candidate for Master of Biostatistics
Department of Biostatistics and Bioinformatics,
Duke University
xingyan.wang@duke.edu

April 14, 2017
Outline

• Definition of trials

• Clustering Effects in RCT
Definition of trials

<table>
<thead>
<tr>
<th>Trial Type</th>
<th>Before randomization</th>
<th>After randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRGT</td>
<td></td>
<td>😊</td>
</tr>
<tr>
<td>GRT</td>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>

- Individually Randomized Clinical Trials (RCTs)
- Individually Randomized Group Treatment Trials (IRGTs)
- Group-Randomized Trials (GRTs)
Clustering effect in RCT

Definition of clustering

1. Observations are grouped together based upon common attributes;
 multicenter trials: Patients are grouped together within centers
 trails where the intervention is a type of surgery or therapy and patients are grouped together by surgeon.

2. Some non-standard situations;
 Examples: baseline factors—age, sex
 1) Pre-randomization
 Patients are grouped into clusters and then randomized.
 2) Post-randomization
 Patients are randomized and then assigned to clusters.
 Notes: Compared to IRGT & GRT
 Pre-randomization – GRT
 Post-randomization – IRGT
• Non-ignorable Clustering

Theoretical Definition

\[Var(\text{trt effect}) = V_0 + V_E \]

Where:
1. \(V_0 \): Variance of treatment effect when clustering is not present;
2. \(V_E \): Additional variance/factor based on clustering.

• Non-ignorable clustering means \(V_E \neq 0 \);

• \(V_E \) is a function of:
 1. the correlation between outcomes for patients in the same cluster
 → Generally speaking: ICC (Intraclass correlation coefficient);
 2. Correlation between treatment assignments for patients in the same cluster.

• Non-ignorable clustering → both 1 and 2 are not zero
Notes on V_E:

\[Var(\text{trt effect}) = V_0 + V_E \]

1. V_E is a function of:
 1. Correlation between outcomes for patients in the same cluster \rightarrow ICC
 2. Correlation between treatment assignments for patients in the same cluster.

 Reason 1: Patients with similar characteristics may be more likely to present to the same cluster;

 Reason 2: Clusters themselves exert some influence on outcome.

 - Correlation between treatment assignments for patients in the same cluster.
 Reason: Patients in certain clusters are more likely to be in a certain treatment group
• **Statistical Methods**

Scenario 1:
Both treatment arm & Control arm are group treatment

\[y_{ij} = \mu + I_T \delta + x_{ij} \beta + u_i + e_{ij} \]

Where:
1. \(y_{ij} \): Continuous outcome of the \(j \)th patients in the \(i \)th clusters;
2. \(I_T \): Indicator function of treatment group;
3. \(\delta \): Treatment effect;
4. \(x_{ij}, \beta \): Baseline covariates and their coefficients;
5. \(u_i \sim N(0, \sigma_u^2) \): Between cluster variation;
6. \(e_{ij} \sim N(0, \sigma_e^2) \): Patient level error term.
\[y_{ij} = \mu + I_T \delta + x_{ij} \beta + u_i + e_{ij} \]

\[y_{ij} = \mu + \delta + x_{ij} \beta + u_i + e_{ij} \]

\[y_{ij} = \mu + x_{ij} \beta + u_i + e_{ij} \]

\[\text{Treatment} \quad \text{Control} \]

- **ICC:** \[\rho = \frac{\sigma^2_u}{\sigma^2_u + \sigma^2_e} \]
- Disadvantage: between-treatment heteroscedasticity
 1. Can happen both between and within clusters;
 2. Example:
 - Standardize one type of therapist \(\rightarrow \) reduce between cluster variance since therapists become mutually more consistent. – between cluster
 - Standardize one type of therapist \(\rightarrow \) reduce variation in outcome of patients treated by the same therapist. – within cluster
\[y_{ij} = \mu + I_T \delta + x_{ij} \beta + u_i + e_{ij} \]

Where:
1. \(V_i \sim N(0, \sigma_v^2) \): Random coefficients at cluster level;
2. \(\xi_{ij} \sim N(0, \sigma_\xi^2) \): Random coefficients at individual level

\[\rho = \frac{\sigma_u^2 + \sigma_v^2}{\sigma_u^2 + \sigma_v^2 + \sigma_e^2 + \sigma_\xi^2} \]

Duke Medicine
Scenario 2:
Treatment arm is group treatment, while control arm is individual treatment \(\rightarrow\) random coefficient model

\[
y_{ij} = \mu + I_T \delta + x_{ij} \beta + I_T u_i + e_{ij}
\]

Treatment: Group Therapy
\[
y_{ij} = \mu + \delta + x_{ij} \beta + u_i + e_{ij}
\]

Control: Individual Therapy
\[
y_{ij} = \mu + x_{ij} \beta + e_{ij}
\]

\[
\rho = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}
\]

\(\rho\) = standard deviation of treatment effect
• Sample Size Calculation

- Assumptions:
 1) All clusters in each treatment arm are of equal size; \(m_1, m_2 \)
 2) Both treatment groups are of equal size with equal variance in each arm and intracluster correlation coefficients (ICC); \(\sigma, \rho_1, \rho_2 \)

- Estimation of standard error of the treatment effect

\[
\sigma_{pooled} = \sigma \sqrt{\frac{(1 + (m_1 - 1)\rho_1)}{N_T R} + \frac{(1 + (m_2 - 1)\rho_2)}{N_T / R}}
\]
A large sample formula for computing the power

\[z_\beta = \frac{\mu_1 - \mu_2}{\sigma_{pooled}} - z_{\alpha/2} \]

\[\sigma_{pooled} = \sigma \sqrt{\frac{(1 + (m_1 - 1)\rho_1) + (1 + (m_2 - 1)\rho_2)}{N_TR + N_T/R}} \]

We can maximize power by finding a propitiate allocation ratio: \(R \)

\[R = \sqrt{\frac{1 + (m_1 - 1)\rho_1}{1 + (m_2 - 1)\rho_2}} \]
Sample size

\[z_\beta = \frac{\mu_1 - \mu_2}{\sigma_{\text{pooled}}} - z_{\alpha/2} \]

\[\sigma_{\text{pooled}} = \sigma \sqrt{\frac{(1 + (m_1 - 1)\rho_1)}{N_T R} + \frac{(1 + (m_2 - 1)\rho_2)}{N_T/R}} \]

\[R = \frac{\sqrt{1 + (m_1 - 1)\rho_1}}{\sqrt{1 + (m_2 - 1)\rho_2}} \]

Then we can solve the sample size \(N_T \):

\[N_T = \sigma^2 \frac{\left(z_\beta + z_\alpha \right)^2}{(\mu_1 - \mu_2)^2} \left(\frac{1 + (m_1 - 1)\rho_1}{R} + \frac{1 + (m_2 - 1)\rho_2}{1/R} \right) \]
\[N_T = \sigma^2 \left(\frac{z_\beta + z_\alpha}{2} \right)^2 \frac{(1 + (m_1 - 1)\rho_1)}{R} + \frac{(1 + (m_2 - 1)\rho_2)}{1/R} \]

Compared with standard two-arm sample size calculation:

\[N = \frac{2\sigma^2 [z_{1-\alpha/2} + z_{1-\beta}]^2}{(\mu_1 - \mu_2)^2} \]

\[\frac{(1 + (m_1 - 1)\rho_1)}{R} + \frac{(1 + (m_2 - 1)\rho_2)}{1/R} : \text{Weight Value for sample size calculation} \]
If control arm is individual treatment, then?

- The unit of cluster in control arm is individual patient, which means $m_2 = 1$;
- Allocation Ratio:

 $$R = \sqrt{\frac{1 + (m_1 - 1)\rho_1}{1 + (m_2 - 1)\rho_2}} = \sqrt{1 + (m_1 - 1)\rho_1}$$

- Sample size calculation:

 $$N_T = \sigma^2 \frac{(\frac{z_\beta + z_\alpha}{2})^2}{(\mu_1 - \mu_2)^2} \left(\frac{1 + (m_1 - 1)\rho_1}{R} + \frac{1}{1/R} \right)$$
Short summary

- Clustering effects in RCT
 1. Definition of clustering
 2. Non-ignorable clustering
 3. Statistical Methods (3 models, 2 scenarios)
 4. Sample size calculation
- What’s Next
 Equal sample size → Unequal sample sizes
 Ben’s presentation:
 Sample Size Calculations for Group Randomized Trials with Unequal Sample Sizes through Monte Carlo Simulations
Q&A
References

• David Murray’s online course: Pragmatic and Group-Randomized Trials in Public Health and Medicine
Thank You!